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t Faculty of Education, University of Maribor, Korogka 160, 

62000 Maribor, Slovenia 

(Received 18 February 1992; accepted 17 April 1992) 

A phenomenological free energy is used to describe the stable ordering of 
nematic liquid crystals confined to supramicron spherical cavities. In particular the 
effects of the saddle splay elastic constant, K,,, on the equilibrium structures and 
phase diagram of droplets with homeotropic surface anchoring are discussed. Some 
structures are illustrated by the corresponding simulated polarization microscope 
textures. Possibilities for an experimental determination of the saddle-splay elastic 
constant and surface anchoring strength by studying the radial-axial structural 
transition in such droplets are analysed. It is shown that the K , ,  term in the elastic 
free energy stabilizes a deformed droplet structure even in the limit of the zero 
anchoring strength. 

1. Introduction 
Most of the studies of the surface effect on nematic liquid crystals have dealt with 

director anchoring, more precisely with the angular dependent part of the interfacial 
coupling [ 1-31. These phenomena are particularly important for the operation of the 
twist and supertwist nematic cells [4]. Usually the effect of the surface part of the elastic 
free energy is neglected [S]. This approach is justified in the strong anchoring limit 
where a fixed anchoring angle can be assumed. When liquid crystals are confined to 
micron size spaces this limit is not usually applicable. This is the case in the recently 
discovered polymer dispersed liquid crystals (PDLC) [6] which are used in shutters 
and displays based on field controlled light scattering [7]. Usually, droplets of a nearly 
uniform size are formed during the phase separation caused by a polymerization 
process of liquid crystal-prepolymer mixtures. The average droplet radius varies from 
the submicron region up to a hundred microns depending on the conditions during the 
formation process. The nematic structure within a droplet is the result of the interplay 
between elastic, surface and external field interactions. In submicron droplets the 
spatial dependence of the order parameter [9-113 and the order parameter dependence 
of the interfacial coupling [2,9,10] are particularly important; therefore the Landau- 
de Gennes description [I21 is usually used. Here we limit our attention to micron and 
supramicron droplets where a description based on the Frank elastic free energy [ 131 
including surface terms can be used [14]. The effect of the Frank elastic constants K ,  ,, 
K,, and K , ,  on the stability of nematic structures is relatively well understood while 
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614 S .  h m e r  and S. Kralj 

the influence of the twist-bend (K13) and saddle-splay (K24) surface elastic constants 
[15-191 is much less understood. 

In our recent paper [14] we have demonstrated that in the limit of weak anchoring 
the constant K,, influences the director field within a nematic droplet and the stability 
of structures themselves. Strigazzi was the first to propose a way to measure [16] the 
K24 constant. The difficulty in separating the effects of the surface elastic constant K24 
and surface anchoring strength was first solved by a ’H NMR study of nematic liquid 
crystals confined to cylindrical cavities [20,21] with surfaces enforcing weak normal 
anchoring. Crawford et al. [21] have estimated K24 by fitting experimental deuterium 
spectra with the corresponding line-shapes calculated for the escaped radial structures 
with point defects. 

In contrast to the elastic constants K,, ,  K,,, K,, and KZ4, the constant K13 is 
associated with the free energy term which also includes second derivatives of the 
nematic director field. Its effect has yet to be completely analysed [lS-181. For the 
appropriate treatment of this elastic constant the bulk elastic terms in the expression 
for the nematic free energy should be extended up to second order in the second 
derivatives of the director field n. There is no experimental evidence on the value of K 13. 

A theoretical study in a planar liquid crystal cell indicates limits of possible K13 values, 
namely K,,<K3,/2 and K13<K11/2 [17]. In addition Barber0 et al. [18] have 
demonstrated that the K,, term can stabilize deformed structures although the 
anchoring strength at the liquid crystal interface is negligible. Therefore the term 
corresponding to K13 will be omitted in the following discussion. 

The aim of this paper is to demonstrate how K24 and the anchoring strength could 
be determined by studying the stability diagrams of structures in a spherical nematic 
droplet embedded in a material which enforces weak homeotropic [22] surface 
anchoring. In our numerical study we limit our attention to relatively large droplets 
(supramicron sizes) so that the nematic structures are well characterized by director 
fields alone [lo, 113. 

In $2  we define all contributions to the free energy which are important for our 
phenomenological treatment of confined nematics. In $ 3 the radius-field-temperature 
phase diagram in supramicron size droplets is briefly discussed. In $ 4 the possibility for 
the determination of the K24 elastic constant and surface anchoring strength via the 
observation of structural transitions in such systems is analysed. 

2. Free energy 
The minimization of the phenomenological free energy is usually used to determine 

the stable structure of a chosen system at constant temperature and volume. It is 
convenient to divide the free energy density into homogeneous fo, elastic f,, interfacial 
f, and field fr parts. In our study limited to supramicron droplets a constant order 
parameter approximation can be used so that fo is just a temperature dependent 
parameter. The inhomogeneous part of the nematic free energy density f, is thus 
reduced to the Frank elastic free energy density [5 ,  12,231 

f,(r)=+{K,,(V On)’ + K,,(n. V x n)’ + K3,(n x V x n), 

-K,,V.(n(V.n)+n X V  x n)}. (1) 

described with four elastic constants. Close to the nematic-isotropic transition TN, 
these constants are proportional to the square of the order parameter S and so diminish 
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K2, injluence on the structure of nematic droplets 615 

on approaching TN, [23]. The interaction of the liquid crystal with the surrounding 
medium is described by a simple contact interaction 

WO f,(r)=(l -(n*er)’)---6(r-R), 2 

characterized by e,, the preferred anchoring direction on the droplet surface and the 
anchoring strength Wo [l, 2,243. The temperature dependence of Wo can be introduced 
formally by an expansion in terms of the order parameter S [2]. The vector R in 
equation (2) defines points on the droplet surface. The interaction with an external 
magnetic field B is described by [23] 

P O  fr= --Ax(B-n),, 2 (3) 

where Ax is the difference between the principal values of the susceptibility tensor 
corresponding to the directions parallel and perpendicular to n. The material constant 
Ax is proportional to the order parameter S [23]. It should be stressed that the effect of 
an electric field is in general more complicated: in a much larger susceptibility, in 
comparison to the magnetic case, usually the electric field varies substantially over the 
droplet. Therefore, a complete solution of the electric field case can be obtained by 
solving the corresponding Maxwell equations simultaneously with the minimization of 
the free energy [25]. Further we do not take into account the flexoelectric effect [5] 
because the flexoelectric free energy (in zero external electric field) is, for typical values 
of flexoelectric constants, negligible compared to the elastic free energy. 

The minimization of the total free energy 

F = uo +fe +f, +h)d 3r, f 
is achieved by solving the Euler-Lagrange differential equations. We limit our 
discussion to cases without twist deformations, so the nematic director can be 
expressed as 

n = -sin Oe, + cos Oe,, 

where e, and eg are unit vectors of the spherical coordinate system and 8 is the angle 
between e, and n. With this ansatz the Euler-Lagrange equations are reduced to the 
bulk and surface differential equation for the scalar field O(r,9) where the latter 
equation introduces boundary conditions imposed by the surface interaction (see 
equation (2)). The equations are solved by the over relaxation method [26]. Here we 
concentrate on the effects of the elastic constant K , ,  while all details will be published 
separately [14]. 

3. Stable structures and phase diagrams 
Within our imposed limitations three simple structures can occur: (i) the radial 

structure with a central point defect and a mostly radial director field (see structure (a) 
in figure 1); (ii) the axial structure where the director field is predominantly axial in the 
central region while close to the surface it bends but not enough to satisfy completely 
the preferred normal anchoring condition at the surface (see structure (b) in figure 1); 
(iii) the axial structure with a line defect (equatorial disclination line) where the director 
field in the central region is similar to the axial case (ii) but the bend deformation close 
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616 S. Zumer and S. Kralj 

R /d 

25 

Figure 1. Phase diagram of a nematic droplet with homeotropic anchoring. Coexistence lines 
for three sets of elastic constants are shown. In the insert schematic representations of 
stability regions of (a) a radial, (b) an axial, and (c) an axial structure with a line defect are 
shown. 

to the surface is more pronounced so that the director field is nearly everywhere normal 
to the surface (see structure (c) in figure 1). 

For a chosen droplet radius a structure may become stable or reversed either by a 
variation of the external field or indirectly by a temperature induced variation of the 
material constants. In order to compare the effects of the external field and elastic forces 
we use the correlation length t = , / [ K , , / ( p O A ~ ) ] / B  and to compare the effects of 
anchoring and elastic forces the extrapolation length d=  K,,/W, is used [ S ] .  

The stability regions of the structures mentioned can be presented in a universal two 
dimensional phase diagram (see figure 1) where the ratio R/d=  W,R/K,,  on 
one coordinate axis measures the relative anchoring strength and the ratio 
d / (  = B,/(K, I p o A ~ ) / W o  on the other coordinate axis measures the relative field 
strength. Two neighbouring stability regions are separated by a first order phase 
transition curve which is described by the dependence of the transition ratio ( d / t ) ,  
(a&-transition field) on the ratio (Rld) .  For each set of elastic constants this curve 
starts at the zero field radial-axial coexistence point (0, (R/d  ),} and reaches the 
inversion point { (d /& (R/d  )i} corresponding to the maximum radial-axial transition 
field B, max. At the triple point where all three phases coexist, the radial-axial transition 
line splits into two first order transition lines. Comparison of the phase diagrams for 
different choices of elastic constants (see figure 1) shows that they all have the same 
general features but they are substantially scaled along both coordinate axes. It is 
evident that the contribution of the K,, term to the free energy is the largest in the axial 
structure, smaller in the axial structure with the line defect and the smallest in the radial 
structure. Similar effects could be observed for the K,, contribution. More details of 
K,, dependence will be given in the next section. 
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K , ,  injuence on the structure of nematic droplets 617 

We now briefly review the important features of the structures. Radial and axial 
structures at the zero field coexistence point {O, (R/d) , }  are presented in figure 2. In 
figure 3 the radial and axial structures at the triple point are shown. The radial structure 
is stable for strong anchoring and weak fields. In zero field the central defect is 
surrounded by a completely radial director field (see figure 2 (a)) which with increasing 
external field progressively deforms and partially aligns along the direction of the 
external field but the defect stays at the droplet centre (see figure 3(a)). The axial 
structure is stable in the weak anchoring regime or for any anchoring strength if the 
field is stronger than B, (see figures 2 (b) and 3 (c)). The degree of the internal director 
alignment depends on the field and anchoring strength. The axial structure with a 
defect line in the equatorial plane (see figure 3 (b)) is stable only in the strong anchoring 
limit (above the triple point) in a very narrow region between radial and axial stability 
regions (see figure 1). 

(4 (b)  

Figure 2. Radial (a) and axial (b) director field and texture of a spherical nematic liquid crystal 
droplet with homeotropic anchoring at the zero field axial-radial coexistence point. 
Simulations correspond to R / I  = 6, K ,  , = K , ,  = K,,, (R/d )o = 5. 
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KZ4 influence on the structure of nematic droplets 

RIR 

619 

.1 1 

Figure 4. Three dimensional B-R-T phase diagram for a spherical nematic droplet with 
K ,  = K , ,  = K , ,  = K .  Only the weak anchoring region is shown. In the calculations we 
have assumed K cc S( T)’, Ax cc S( T),  W, cc S( T); the temperature dependence of the order 
parameter S( T )  for 4-n-pentyl-4-cyanobiphenyl was used. 

In figures 2 and 3 the calculated director fields are accompanied by the 
corresponding simulated polarization microscope textures. These simulations were 
obtained with a simple method developed by Crawford et al. [27] for the case where 
differences in indexes of refraction are so small that only phase shifts between the 
ordinary and extraordinary rays are important while bending and reflection of the rays 
can be neglected. In our simulations we take 1.7 for the principal index of refraction 
along the director and 1.5 for the perpendicular direction. In the case of the axial 
structure only simulations where light is directed along their symmetry axis are treated. 
Therefore both our textures (axial and radial) have a dark cross as a sign of the 
cylindrical symmetry but the distributions of the interference fringes are very different 
reflecting the different spatial dependence of the director field encountered by the 
passing light. 

The universal phase diagram (see figure 1) is useful for the presentation of field- 
induced transitions because a change in the field strength corresponds to the 
displacement along the d/ (  axis. The diagram is much less appropriate for the 
visualization of the temperature-induced transitions because of the temperature 
dependences of the characteristic lengths d and 4;. Therefore we take into account the 
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620 S. h m e r  and S. Kralj 

I I .  

* . O  I 

O e 5 i i  0.0 0.5 0.6 0.7 

Figure 5. K24/K1 dependencies of (a) the droplet order parameter (P,(cos 0)); (b) the ratio 
(Rid),, at the zero field coexistence point; (c) the ratio (d / ( ) ,  at the inversion transition 
point. In the calculations we have set K ,  = K , ,  = K .  

Figure 6. Zero field axial-radial transition point. The dependence of (P,(cos (B))),, 
(P,(cos (O)),), and (0'),, measuring the average degree of director alignment, on K,,/K 
for the case K , , = K , , = K .  
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K, ,  injuence on the structure of nematic droplets 62 1 

Figure 7. Axial director field at the point R / d = 0 ,  d / ( = O  which is still stable in the limit 
Kz4/K1 I +2. 

Figure 8. Axial textures (a), (b), (c), ( d ) ,  (e) and radial texture cf) at zero field axial-radial 
coexistence point for different K,, /K ratios. The approximation of equal Frank elastic 
constants and the ratio R/A=20 were used. The radial texture does not depend on the 
K Z 4 / K  ratio but only on the ratio RIA. 
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622 S. h m e r  and S. Kralj 

temperature dependence of the elastic constants, Ax, W, and create a three dimensional 
phase diagram where the axes are the quantities field, radius and temperature which 
can be varied directly (see figure 4). The variables are given in units of the values Bi, Ri, 
and TN, corresponding to the inversion point {(d/<)i, (R/d)i} at the nematic-isotropic 
transition temperature TNI. 

In the following we discuss how the value of the K24 elastic constant can be 
extracted from the stability diagrams. 

4. Determination of K , ,  
For the sake of simplicity we limit our discussion here to the case of equal Frank 

elastic constants (Kl l  = K , , = K ) .  To obtain a quantitive measure of changes in a 
chosen droplet structure we introduce the droplet order parameter defined as 

( P 2 )  = ((3 cos2 9- 1)/2), 

where 6' is the angle between the symmetry axis of the axial structure and the local 
director field and (. . .) stands for the average over the droplet. Since the zero field 
coexistence point for all KZ4 values lies in the weak anchoring regime, the axial 
structure apparently changes with the saddle-splay elastic constant. In figure 5 (a) the 
droplet order parameter ( P , ) ,  of the axial structure at the zero field transition point 
(0, (Rid),) is shown as a function of the ratio K24/K. The corresponding dependence of 
( R / d ) ,  on K,, is plotted in figure 5(b). The dependence of the scaled field (Rlt;), 
corresponding to the inversion point on K,, is shown in figure 5(c). We see that by 
increasing the ratio K z 4 / K ,  the weak anchoring stability range of the axial structure 
shrinks and at K24/K = 2 disappears (see figure 5 (b)). Simultaneously the position of 
the inversion point in the universal phase diagram (see figure 5 (c)) shifts towards the 
zero value of (R/d)i and the infinite value of (d/c)i. Therefore, the existence of the axial 
structure of a spherical nematic droplet with homeotropic boundary conditions in zero 
external field is enough to conclude K24/K , , < 2. 

It is important to emphasize that ( P 2 ) ,  < 1 at KZ4/K = 2 indicates that the K24 
term in a spherical nematic droplet would stabilize a deformed structure also in the case 
of zero surface interaction strength. This means that the Kz4 term in the free energy 
effectively plays a similar role to the surface anchoring term. This effect is even more 
evident in figure 6 where ( P 2 ) , ,  (Pf), and (@), dependencies on the K24 value are 
shown and in figure 7 where the calculated stable axial structure at (R /d ) ,=O is 
presented for the case K24/K = 2. The deformed structure at ( R / d ) ,  = 0 in figure 8 (e) is 
clearly visible. Similar effects induced by a K ,  term in the free energy were predicted by 
Barber0 et al. [l8] for a nematic phase confined to a planar cell. 

4.1. Zero jield coexistence point 
The K24 value could be extracted from the known (PZ), value for the axial 

structure at this point. ( P 2 ) ,  could be measured, for example, by using the NMR line 
shape study. With this value for the droplet order parameter the value of the K24 
can be deduced directly from the numerically calculated functional dependence 
( P 2 ) ,  = (PZ)O(K24/K1 1) for a particular nematic liquid crystal. This procedure is 
presented schematically by solid lines with arrows in figure 5 (a). Further, the anchoring 
strength can be obtained by introducing the value of K24 into the numerically 
evaluated function (Rld) ,  = (R/d)o(K24/K, l). In figure 5 (b) our single elastic constant 
case is illustrated. 
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K24 influence on the structure of nematic droplets 623 

In larger droplets (R>> wavelength A) instead of measuring (P2), the direct optical 
polarization microscope observations can be used to determine K24 at the zero field 
axial-radial coexistence point. The sequence of calculated textures of the axial 
structure at this transition point (see figure 8) corresponding to five different K24/K 
ratios shows a pronounced K24 dependence. With increasing K24 the intensity and 
number of interference rings diminishes reflecting increased ordering along the axis of 
cylindrical symmetry. 

4.2. Inversion point 
Experimental determination of the transition field strength B, corresponding to the 

inversion point value (R/<)i leads, together with the known material constants 
K , ,  and K33,  to the determination of K24/K,, using a theoretically predicted curve 
(R/<), =(Rf<)i(K24/K11) for a particular choice of K33/K ,1 .  This curve and the 
schematic way of determination is shown in figure 5 (c) (see dashed-line with arrows) for 
K , ,  =K,,=K. The resulting value of K24/K,, could again be used to extract the 
anchoring strength from the calculated dependence of the zero field coexistence point 
(R ld ) ,  dependence on the K24/Ki1 (see dashed line with arrows in figure 5(b)).  

5. Conclusions 
In this paper we have analysed the influence of the K24 constant on the stability of 

structures of a spherical nematic droplet with a homeotropic boundary condition. 
Until recently in most studies of encapsulated liquid crystals the contribution 
corresponding to this elastic constant has been neglected. Our results indicate that such 
approximations are not justified. Preliminary experiments [20] show that the value of 
K2, is comparable to the values of other Frank elastic constants. Here we have 
demonstrated how the K24 saddle-splay elastic constant can be determined from the 
zero field and inversion radial-axial transition. Two methods have been proposed: first 
based on the observation of the structure changes at the zero field axial-radial 
coexistence point and the other on the determination of the transition field at the 
inversion point. In combination with theoretical prediction K24 and W, can be 
obtained. For small droplets NMR can be used and for large droplets polarization 
microscopy. In addition we have shown that the presence of the K24 term also in the 
case of the negligible surface interaction strength stabilizes strongly deformed 
structures in nematic droplets. 

The first phase diagram study of a nematic droplet was performed by Erdmann 
et al. [22]. Unfortunately no reliable data on the internal field were available thus 
preventing the use of the inversion transition point data to obtain K24 and W,. The 
proved existence of the zero field axial structure is enough to conclude that in the 
materials studied by Erdmann et al. [22] K24 < 2K, , in accordance with the deuterium 
NMR data obtained by Allender et al. [20]. To overcome the problem of the internal 
field we must either make a theoretical estimate of the electric field in the nematic 
droplet or carry out experiments with a magnetic instead of an electric field. 

The estimated error of the first experimental determination of K24 by 'H NMR 
[20] is quite large (up to 80 per cent). We believe that our method based on the direct 
observation of the structure changes in a particular droplet can give more accurate 
results than the indirect NMR observation of the changes in a large number of not 
completely identical cavities. 
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